

Review Paper:

Phyto-fabrication of metal nanoparticles using Thar desert plants

Jangir B.^{1*}, Mochi S.¹, Mishra A.¹, Jangid N.K.², Goel R.¹ and Sharma A.¹

1. Department of Chemistry, JECRC university, Jaipur, Rajasthan, INDIA

2. Department of Chemistry, Banasthali University, Rajasthan, INDIA

*bhawana.3987@gmail.com

Abstract

Nanoparticles possess characteristic properties that make them potential candidates for various applications in diversified fields. Developing novel strategies for the synthesis of nanoparticles is crucial to optimize their properties and expand their potential uses. The biological route of nanoparticle synthesis, also known as green method, has been portrayed as an efficient, cost effective and environmentally friendly technique. Biological materials like plants, bacteria, yeast, fungi and algae have indeed been reported to possess high bioreduction and stabilization abilities, enabling them to synthesize metallic nanoparticles of various sizes and shapes.

Among these biomaterials, this review mainly focuses on Thar desert plant-mediated biosynthesis of metallic nanoparticles. The phytochemicals in desert plants such as polyphenols, alkaloids, steroids, saponins and pregnane glycosides play a crucial role in reduction, capping and stabilization of metal nanoparticles. A systematic study of literature, based on effect of various desert plant materials and experimental conditions on properties of metal nanoparticles is also provided. This review also highlights the applications of nanoparticles stabilized by desert plants in various fields such as agriculture, food industry and medicine.

Keywords: Nanoparticles, Thar desert plants, Green synthesis, Phyto fabrication.

Introduction

Nanotechnology has emerged as the leading development in science comprising an interdisciplinary area which includes invention, designing and utilization of materials of size below 100 nm. Nowadays, there is an increasing number of research articles dedicated to nanoparticles due to their distinctive properties like tremendously small size, large surface to volume ratio, interface effect and quantum effect leading to both chemical and physical modifications in their characteristics in comparison with the bulk material⁴⁷. Nanotechnology is playing a crucial role in many significant fields including biomedical science, mechanics, energy science, drug-gene delivery, optics, electronics, optoelectronic devices, nonlinear optical devices, chemical industry, catalysis and photoelectrochemicals¹⁸. NPs can be engineered to incorporate specific properties to carry drugs,

to enhance contrast in imaging techniques like MRI and CT scans, to improve the efficiency of solar cells, to enhance battery performance, to serve as catalysts in energy-efficient reactions^{7,9,22,40}.

The general approaches for synthesis of nanoparticles include chemical and physical methods²⁸. Chemical methods for the formation of nanoparticles requires the use of hazardous chemical reagents and solvents which can pose health risks to researchers and workers. Sodium borohydride, an expensive and toxic reducing agent, as well as other organic stabilisers and solvents are always extensively used in the case of chemical methods³⁸. Additionally, the waste generated during these processes can be detrimental to both humans and the environment. Physical methods for nanoparticles preparation including ultraviolet, aerosol and thermal decomposition need consumption of high amount of energy, high temperatures and pressures which can lead to potential safety hazards²². For example, in aerosol method, a solution of metal ion precursor is atomized into aerosol droplets at temperature of about 2400 K to produce nanoparticulate metals¹⁹.

Therefore, it is essential to follow proper safety protocols and disposal methods to minimize the risks related to metal nanoparticle. To solve the issue of toxicity associated with physical and chemical methods, green chemistry and nanotechnology agglutinate to design environment friendly nanoparticles via plants, micro-organisms, yeast, fungi etc²⁵. In green nanotechnology, the amount of energy consumption is much lower than in other technologies; almost no toxic chemicals are used and no hazardous waste is produced during synthesis which makes this methodology environmentally compatible.

Biogenic synthesis of nanoparticles is beneficial not only because of its non hazardous impact on environment, but also because of relatively low cost, large scale production of biocompatible nanoparticles with well defined size and shape without any contamination⁵³. Using extracts of diverse plant species to create NPs is found to be more advantageous than the use of microorganism which requires more complicated procedure for microbial culture maintenance⁵⁴.

Phytochemicals present in plant tissues act as reducing, capping, chelating and stabilizing matrix for nanoparticles synthesis. The characteristics of nanoparticles are greatly affected by the concentration and combination of natural products present in the extract of plant source.

Among several plant species, desert plants or xerophytes are on prime focus as they are specifically adapted to thrive in arid environment where water is scarce. Desert plants offer a valuable source of secondary metabolites such as polyphenols (phenolic acids, coumarins and flavonoids), alkaloids, saponins (furostanol saponins, spirostanol saponins and open chain steroid saponins), steroids and pregnane glycosides which have been recognized and utilized by humans for several centuries⁶. Such phytochemicals derived from desert plants have medicinal values for human health including anti diabetic, antioxidants, anticancer, anti- inflammatory, antibacterial, molluscicide and hepatoprotective.

Plants native to hot desert, like *Leptadenia pyrotechnica* produce majority of phytochemicals including saponins, alkaloids, flavonoids and tannins for various purposes such as defense against herbivores, pathogens and harsh weather conditions⁴¹. Despite the promising benefits desert plants offer, the utilization of desert plants for synthesis and stabilization of metal nanoparticles is still underexplored. This review provides a brief overview of few desert plants utilized for synthesis of metal nanoparticles and their applications in diversified areas. With this update, extensive research could be directed towards the use of desert plants to synthesize metal nanoparticles with unique characteristics which can be explored for various applications in the area of cosmetics, construction, food, medicines, pharmaceuticals, agriculture and many others.

Importance of green method for nanoparticle synthesis

For nanoparticle synthesis, various physicochemical and biological pathways come under two distinct classes: a top-

down and bottom-up approach²⁹ (fig. 1). The top-down approach for synthesis of nanoparticles involves reducing larger materials into smaller particles of nanometre size domain through mechanical or physical methods. This typically includes techniques like milling, grinding, lithography, or laser ablation. In these methods, the starting material is broken down into smaller particles through mechanical forces, high-energy collisions, or controlled etching processes. This method is often used when precision in size and shape control is crucial, but it might have limitations in terms of scalability and uniformity as compared to other methods³⁹. The method introduces imperfection in the structure of nanoparticle surface and this is a major limitation of the method because the surface chemistry and physical properties of nanomaterials are significantly affected by surface structure. The bottom-up approach includes the formation of nanoparticles by joining smaller units into larger ones, like self assembly of atoms, molecules and smaller particles growing into larger particles possessing nanoscopic dimensions. This bottom-up approach includes chemical methods as well as biological methods for nanoparticle formation. Due to the use of hazardous reagents in chemical method, biosynthesis of nanomaterials is more advantageous.

Green synthesis of nanoparticles offers an eco-friendlier approach compared to traditional chemical methods²⁸. Green methods typically use natural sources, like plant extracts or microorganisms which have less toxicity, generate less waste and byproducts and synthesize biocompatible and sustainable nanoparticles. Green synthesis encourages environmental sustainability and minimizes harm to the ecosystem.

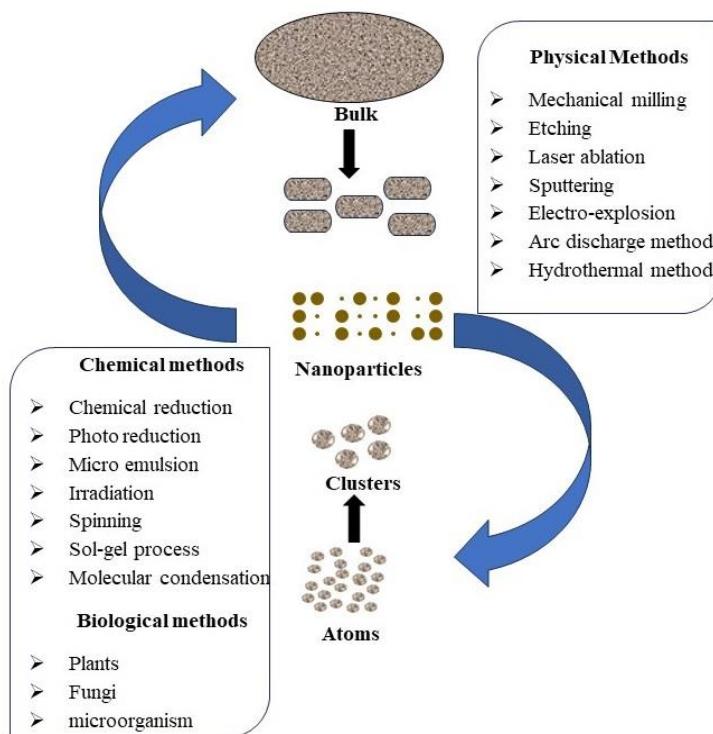
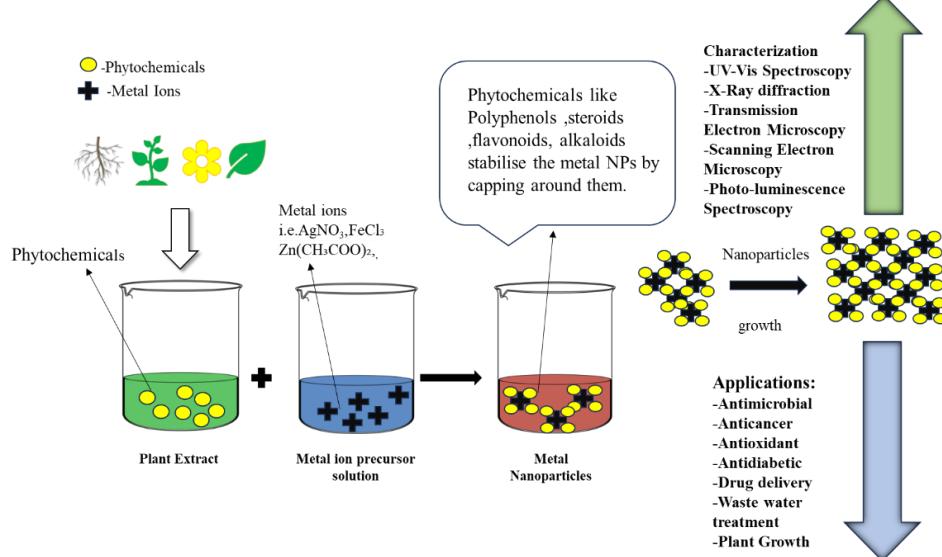


Fig. 1: Methods for synthesis of nanoparticles

Nanoparticles formed by green methods have been observed to have better characteristics and properties that can have a large-scale application in different fields. Plants are considered to be the most important biological entities for nanoparticle synthesis, as their universal abundance, biocompatibility and lack of pathogenicity make them superior over other biological sources. The use of extracts containing biomolecules of plants for designing nanoparticles is relatively easy, environment-friendly, cost-effective and less time consuming.

Phytochemicals in Thar desert plants as source for nanoparticles synthesis

Among plants species, Thar desert plants are extensively being explored to synthesize nanoparticles, due to the presence of numerous phytochemicals that can act as effective reducing, capping and stabilizing matrix for nanoparticles²⁷. This methodology drew attention of scientists due to the easy availability, extensive distribution, survival in adverse climate condition of desert plants, as well as the fact that it is safe to utilize desert plants as a source of numerous metabolites of medicinal value. Desert plants, which are from arid region, produce secondary metabolites for example polyphenols (i.e. phenolic acids, flavonoids and coumarins) alkaloids, saponins (i.e. spirostanolsaponins, furastanolsaponins and open-chain steroid saponins), steroids and pregnane glycosides. Such phytochemicals have many advantageous effects on human health including anti-cancer, anti-diabetic, anti-inflammatory, antioxidants, antibacterial and hepatoprotective.


Despite of having various secondary metabolites, very few reports highlight the use of desert plant extracts as reducing and stabilizing agents in the green synthesis of metal nanoparticles. Few reports on use of desert plants for the synthesis of MNPs have been discussed (table 1). General method for desert plants mediated synthesis of metal nanoparticles has been presented in fig. 2. The synthesis of metal nanoparticles is induced by inclusion of extracts

obtained from different parts of desert plants like roots, flowers, seeds, stems, leaves, bark and fruits into the aqueous solution of metal ions.

The phytochemicals present in plant extract such as alkaloids, enzyme, proteins, amino acids, heterocyclic and vitamins are implicated in the bio reduction of metal ions. and stabilize the synthesized NPs. The mechanism and the specific plant components involved in synthesis of nanoparticles are indeed relatively intricate. The process of reduction is very crucial for synthesis of NPs as it supplies the required electrons to convert metal ion into zero valent state. Subsequently, the metal atoms undergo nucleation after the bioreduction process.

As the metal atoms assemble to form particles of size in nanometer range, a color change is observed due to their unique optical properties. As bio reduction and nucleation process continue, a growth phase is achieved where small size particles mechanically associate to form thermodynamically more stable larger particles. At the termination stage, bioactive compounds such as phenols, flavonoids, enzymes and terpenoids present in the plant extracts exert their stability potential and finally define the shape and morphology of NPs. During this phase, the growth of nanoparticles ceases as the bioactive compounds stabilize the formed nanoparticles. It is well reported in the literature that the mechanism involved in the process of synthesis of NPs from different desert plants differs due to variation in their bioactive compounds, composition and concentration⁶.

Chemical, physical and biological activities of NPs are greatly affected by the concentration of the extract obtained from plant part, pH, temperature and reaction time¹². It is reported that NPs have superior bioactivity as compared to plant extract⁶⁰. NPs can be engineered as nanoplatforms for molecular diagnosis, targeted and effective drug delivery and to overcome the drawbacks associated with traditional medicines⁶¹.

Fig. 2: Green Synthesis of nanoparticles by using desert plant

Several nanoparticles have been synthesized by green method till now and characterized by ultraviolet-visible spectroscopy, photoluminescence analysis (PL), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersion analysis of X-ray (EDAX), atomic force microscopy (AFM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD X-ray photoelectron microscopy (XPS), attenuated total reflection (ATR), thermal-gravimetric differential thermal analysis (TG-DTA), UV-visible diffuse reflectance spectroscopy (UV-DRS) and dynamic light scattering (DLS).

MNPs synthesized by using Thar desert plants

Silver Nanoparticles (Ag NPs): Silver nanoparticles have high reactivity and good conductivity which make them of high importance and increase their applications as well¹⁴. Silver metal nanoparticles prepared from various desert plants adopt different properties like antibacterial, antimicrobial, anticancer or antiproliferative activity, excellent catalytic properties for selective oxidation, photocatalytic degradation of dyes, synthesis of epoxide, enhancement of plant seedling growth, burn wound healing and drug delivery vehicles²³. The typical green method for synthesis of silver nanoparticles (Ag NPs) includes the reduction of silver metal ion by reducing agents present in plant extract. The extracts are usually prepared by soaking the parts of desert plants such as leaves, fruits, seeds, stem, bark and flowers in suitable solvent (water, ethanol) under suitable environmental conditions (fig. 2).

The extracts are then mixed with solution of silver ion, a colour change in the solution is indicative of the formation of silver nanoparticles. There are numerous factors such as plant extract, pH, light and temperature which affect the green synthesis of Ag NPs (Table 1). Chaudhuri et al¹¹ have reported the synthesis of Ag NPs by using silver nitrate with aqueous leaf extract as well as flower extract of *Tecomella undulata* a desert plant called Rohira. The experiment was performed at 60 °C in orbital shaking incubator. Biomolecules present in the plant extract stabilized Ag NP. Polydispersity Index (PDI) of synthesized Ag NPs was found to be 0.378 indicating the longer shelf life of NPs. An enhancement in seedling growth was noticed in the presence of these Ag NPs. Spherical Ag NPs of approximately 20-52 nm size were synthesized by using fruit extract of *Tamarindus indica*³¹. FTIR results suggested that presence of carboxyl, amine, alcohol and amide groups present in biomolecules extracted from fruit shell may involve in the reduction of silver ions to silver nanoparticles.

Hashmi et al²³ have reported the synthesis of biocompatible Ag NPs by using antioxidant-rich plant extract of *Aerva javanica*. FTIR analysis confirmed that phenol acts as a capping agent for Ag NPs. *Cassia angustifolia* leaf extract was used for green synthesis of Ag NPs⁴. It was reported that sennosides present in leaf extract serve as reducing and

capping agents. It was observed that the nanoparticles were poly-dispersed, spherical in shape with size in the range of 9-31 nm. Phytosynthesis of silver nanoparticles (Ag NPs) using *Acacia leucophloea* bark extract was reported⁴². FTIR results have shown that Ag NPs were capped by primary amines, aldehyde/ ketone, azo, aromatic and nitro compounds present in natural extract. The TEM images showed polydisperse spherical Ag NPs of size 17-19 nm. A size controlled synthesis of Ag NPs was demonstrated by using fruit extract of *Zizyphus mauritiana*⁵⁶. The size distribution of Ag NPs was found to be affected by the concentration of fruit extract as well as concentration of silver nitrate and reaction time. The size of Ag NPs was found to decrease from 300 nm to 70 nm with increasing concentration of fruit extract.

Gold Nanoparticles (Au NPs): Gold nanoparticles have been explored extensively and have effective ability to interact with light. Au NPs are well known for their selective termination of cancer cells, biocompatibility, low toxicity, tunable surface plasmon resonance, facile synthetic procedure and easy surface functionalization⁵². Various biomolecules like flavonoids, proteins, phenols etc. present in natural extract act as reducing as well as stabilizing agents in the preparation of Au NPs⁴⁸. Kumari et al³⁴ utilized aqueous latex extract of *Calotropis procera* to synthesize gold nanoparticles. The effect of temperature on the rate of synthesis of AuNPs and their optical properties was studied in detail. It was observed that rate of synthesis of AuNPs was enhanced with increase in reaction temperature, however, surface plasmon resonance (SPR) peaks for all AuNPs solutions obtained at different temperatures exhibited only a shift of 1-5 nm. Polyphenolic compounds present in leaf extract of *Acacia nilotica* were successfully utilized for the synthesis of Au NPs³⁶. It was observed that size of AuNPs reduces upon increasing concentration of leaf extract.

Zinc oxide Nanoparticles (ZnO NPs): Zinc oxide nanoparticles are considered as a significant inorganic nanomaterial with a wide range of applications in the fields of biomedicals as well as optics and electronics³⁷. ZnO NPs have been used as a trace element in the metabolic process due to low toxicity at optimal concentrations.

Alharthi et al³ have reported the synthesis of ZnO nanorods and nanoparticles by using *Salvadora persica* leaf extract via sol gel method. It was observed that synthetic pathway chosen affects the morphology of ZnO NPs significantly. Root extract of *Salvadora persica* was also found to be efficient for synthesis of ZnO nanorods and nanoparticles⁵⁷. Leaf extract of *Ocimum tenuiflorum* was used as reducing as well as capping agent for ZnO NPs of size 50-63 nm⁸.

Rasha et al⁴⁹ reported the biosynthesis of ZnO NPs using fruit extract of *Acacia nilotica*. FTIR studies revealed that O-H and C-H functional groups present in secondary metabolites of fruit extract of *Acacia nilotica* were responsible for synthesis of ZnO NPs.

Table 1
Nanoparticles synthesized from Thar desert plants

Nanoparticle	Common Name	Scientific name	Plant extract part	Properties
Ag	Rohira /luar/desert teak	<i>Tecomella undulata</i>	leaf extract	Enhance seedling effect in crop plants ¹⁰
Ag	gum arabic tree/babul	<i>Acacia nilotica</i>	leaf extract	Antibacterial, antifungal ⁶¹
Ag	Imli /tamarind	<i>Tamarindus indica</i>	fruit extract	Highlystable-microwave assisted ³¹
Ag	Bui /desert cotton	<i>Aerva javanica</i>	aqueous extract	Antioxidant, burn wound healing ²³
Ag	<i>Amla</i>	<i>Phyllanthus emblica</i>	fruit extracts	Effective reducing agent ¹⁴
Ag	Indian clove	<i>Syzygium aromaticum</i>	leaf extracts	Antimicrobial, anti-diabetic ²
Au	Aakado/giant mikweed	<i>Calotropis procera</i>	aqueous latex extract	Antimicrobial for treating skin wound infection ¹³
Au	<i>Gokhru</i>	<i>Tribulus terrestris</i>	leaf, stem, root extracts	Anti-infective ⁴⁵
Pd	Assyrian plum	<i>Cordia myxa</i>	gum extract	Antibacterial, antimicrobial ⁴⁴
Pd	Boswellia Tree	<i>Indian frankincense</i>	gum extract	Antioxidant, Degradation ³³
Pd	Choti-dhudhi	<i>Euphorbia thymifolia</i>	leaf extract	Catalytic efficacy ⁴⁶
Fe	<i>Khejri</i>	<i>Prosopis cineraria</i>	leaf extracts	Dye-removal efficiency 59% ³⁴
Fe	<i>Bada Peelu</i>	<i>Salvadora oleoides</i>	leaf extracts	Dye-removal efficiency 40% ³⁴
Fe ₂ O ₃ and Fe ₃ O ₄	Indian Almond	<i>Terminalia catappa</i>	leaf extracts	Anti microbial and Anti cancer ¹⁶
Fe ₃ O ₄	Imli /tamarind	<i>Tamarindus indica</i>	leaf extract	Peroxidase and dye removal activity ¹
CuO	Bui /desert cotton	<i>Aerva javanica</i>	leaf extract	Antimicrobial ⁵
CuO	Aakado/giant mikweed	<i>Calotropis procera</i>	aqueous latex extract	Adsorptive removal of Cr(4) from aqueous solution ¹⁵
CuO	kair/kareel	<i>Capparis decidua</i>	leaf extract	Antibacterial ²⁹
CuO	Imli /tamarind	<i>Tamarindus indica</i>	fruit and leave extract	Photocatalytic and antibacterial activity ⁶⁰
ZnO	Gum arabic tree/babul	<i>Acacia nilotica</i>	aqueous fruit extract	Antibacterial activity against carbapenem-resistant <i>Klebsiella pneumoniae</i> ⁴⁹
ZnO	Jaal /peelu/mustardtree	<i>Salvadora persica</i>	leaf extracted	Photocatalytic Degradation ³
ZnO/Ag	Imli /tamarind	<i>Tamarindus indica</i>	leaf extract	Facile, eco-friendly, cauliflower like NPs ¹⁷
ZnO	Aakado/giant mikweed	<i>Calotropis procera</i>	leaf extract	Photodegradation of methyl orange ²⁰
ZnO	Tulsi /holy basil	<i>Ocimum tenuiflorum</i>	leaf extract	photocatalytic and antimicrobial ⁵⁵
TiO ₂	Sweet lime	<i>Citrus limetta</i>	leaf extracts	Photocatalytic ⁴³
TiO ₂	<i>Giloy</i>	<i>Tinospora cordifolia</i>	stem extracts	Photocatalytic degradation ⁵¹
TiO ₂	Imli /tamarind	<i>Tamarindus indica</i>	leaf extract	Photocatalytic degradation ²⁴
TiO ₂	Sargado /bitter drumstick	<i>Moringa concanensis</i>	aqueous solution of leaf extract	Antibacterial against PDR <i>E.coli</i> ⁵⁹

The effect of concentration of leaf extract of *Cordia myxa* on morphology of ZnO NPs was studied⁵⁰. It was observed that Wurtzite shaped ZnO NPs were obtained at 25% extract concentration while spherical shaped particles possessing layer-by-layer discs like structures were observed at 10% extract concentration. ZnO NPs of cauliflower like structure were obtained in the presence of leaf extract of *Tamarindus indica*¹⁷.

Copper Oxide Nanoparticles (CuO NPs): Copper oxide NPs possess various properties and have numerous applications in the field of biomedicine, textile industry, catalysis, high temperature super conductors, environmental remediation etc⁵⁸. Very few desert plants have been utilized for phytosynthesis of CuO NPs till now. The phytochemicals react with copper ion leading to the reduction followed by stabilization of CuO NPs⁶⁰. The fruit and leaf extract of *Tamarindus indica* have been used for reduction and stabilization of CuO NPs⁶⁰.

It was observed that the source of extract significantly affects the growth and properties of CuO NPs. Quantum dots of CuO NPs of size 5-10 nm were obtained with fruit extract while leaf extract mediated the synthesis of polydisperse spherical nanoparticles of size 50-100 nm. The use of leaf extract of *Capparis decidua* has led to the formation of six petals flower shaped structure of CuO NPs with catalytically active large surface area²⁹.

Other metal oxide Nanoparticles: Various oxides of iron, titanium, cerium, magnesium etc. are found to have numerous applications (Table 1) in environmental remediation, catalysis, textile industry, biomedical electronics and energy nanogenerators³⁷.

Hussain et al²⁶ have reported the synthesis of NiO NPs in extract of *Acacia nilotica* prepared in water and ethanol. A prominent effect of solvent on size of nanoparticles was observed. Their study concluded that the sizes of spherical shaped NiONPs were found around 16 nm and 28 nm in aqueous and ethanolic solutions respectively. Effective green synthesis of spherical anatase phase TiO₂ nanoparticles of size range 20-40 nm was achieved by using leaf extract of *Tamarindus indica*²⁴.

FTIR studies revealed that bioreduction and stabilization of TiO₂ NPs are governed by phytochemicals such as secondary amines, carboxylic acids, quinones, alcohols, amides, aromatic compounds and polysulphides. A green and facile method was performed to synthesize magnesium oxide nanoparticles (MgO NPs) by using *Camellia-sinensis* leaves extract³². MgO NPs exhibited highly porous crystalline nanostructure of 22-25 nm. Akanda et al¹ studied the optimized condition for the phytosynthesis of iron oxide (Fe₃O₄) NPs by using extract of leaves of *Tamarindus indica*. The parameters such as solvents system, concentration of leaf extract, pH, buffer and time were optimized for synthesis of Fe₃O₄ NPs. SEM analysis

confirmed the formation of cubic morphology and particle size of 80 ± 3 nm.

Applications

Due to unique properties, nanoparticles are extensively utilized in various fields such as agriculture, medicine, electronics, drug delivery, catalysis and waste water treatment (Table 1). The metal-based nanoparticles synthesized by Thar desert plants of medicinal value are much preferred in biomedical applications. The use of nanoparticles for cancer treatment has been dragging attention in recent years. Zubair et al⁶¹ have synthesized Ag NPs by using leaves extract of *Acacia nilotica* which exhibited significant anticancer, antioxidant and antidiabetic potential. Ag NPs were found efficient therapeutic agents against liver cancer cells in humans, scavenging agent for free radicals that drive oxidative stress and strong inhibitor for α -glucosidase enzyme activity. The antimicrobial activity of nanoparticles makes it a potential candidate in the field of food preservation as well as sanitizing agents for sterilizing equipment in food industry⁷.

Ag NPs synthesized from leaf extract of *Datura stramonium* exhibited pronounced antibacterial activity against *E. coli*²¹. Nanoparticles have been extensively explored as plant growth promoters in the field of agriculture. ZnO NPs synthesized from leaf extract of *Calotropis* showed significant enhancement in growth of *Azadirachta indica*, *Pongamia pinnata* and *Alstonia scholaris*²⁰. The nanosized metal nanoparticles are extensively being used as catalyst for waste water treatment due to high surface area to volume ratio⁷. The photocatalytic activity of heterogeneous TiO₂ NPs synthesized by leaf extract of *Tamarindus indica* was tested on photodegradation of Titan yellow dye by semiconductor photocatalysis mechanism³¹. The photo degradation process followed the pseudo first order kinetics.

Conclusion

Extracts of Thar desert plants can indeed be efficiently used in the synthesis of metal nanoparticles, providing a greener and more sustainable approach. Biosynthesis of nanoparticles using desert plants is recognized for its simplicity, availability of vast medicinal value based secondary metabolites present in desert plants, cost effectiveness, environment friendliness and safety. This process is typically a one-step method, leveraging the natural reducing and stabilizing agents found in plant extracts. While the potential of plant-mediated nanoparticle synthesis is well-recognized, the exact mechanisms remain elusive.

By employing a combination of advanced experimental techniques, researchers can gain deeper insights into the roles of specific phytochemicals and functional groups in the synthesis process. Understanding these mechanisms will not only enhance the efficiency and control of biosynthesis but will also pave the way for the development of new applications and innovations in nanotechnology. More systematic and interdisciplinary research efforts are needed

to fully elucidate the green synthesis pathways offered by diverse plant species.

References

1. Akanda M.R., Al-Amin M., Mele M.A., Shuva Z.M., Hossain M.B., Islam T. and Ema U.H., Parameters optimization of Fe_3O_4 NPs synthesis by *Tamarindus indica* leaf extract possessing both peroxidase as well as excellent dye removal activity, *Helijon*, **9(6)**, 1-10 (2023)
2. Aldabaan N.A., Turakani B., Mahnashi M.H., Shaikh I.A., Alhazmi A.Y., Almasoudi H.H. and Iqubal S.S., Evaluation of antimicrobial, anticancer, antidiabetic, antioxidant activities and silver nanoparticles synthesized from Indian Clove-*Syzygium aromaticum* leaf extract, *Journal of King Saud University-Science*, **36**, 1-8 (2024)
3. Alharthi F.A., Alghamdi A.A., Alothman A.A., Almarhoon Z.M., Alsulaiman M.F. and Al-Zaqri N., Green synthesis of ZnO nanostructures using *Salvadora persica* leaf extract: applications for photocatalytic degradation of methylene blue dye, *Crystals*, **10(6)**, 1-16 (2020)
4. Amaladhas T.P., Sivagami S., Devi T.A., Ananthi N. and Velammal S.P., Biogenic synthesis of silver nanoparticles by leaf extract of *Cassia angustifolia*, *Advances in Natural Sciences: Nanoscience and Nanotechnology*, **3(4)**, 1-7 (2012)
5. Amin F., Khattak B., Alotaibi A., Qasim M., Ahmad I., Ullah R. and Ahmad R., Green Synthesis of Copper Oxide Nanoparticles Using *Aerva javanica* Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities, *Evi. Based Comp. Alt. Med.*, <https://doi.org/10.1155/2021/5589703> (2021)
6. Aseel D.G., Behiry S.I. and Abdelkhalek A., Green and Cost-Effective Nanomaterials Synthesis from Desert Plants and Their Applications, In Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications, Springer Nature Singapore, 327-357 (2023)
7. Astruc D., ed., Nanoparticles and catalysis, Weinheim: Wiley-Vch, **1**, 1-620 (2008)
8. Bala Chennaiah M., Kumar K.D., Kumar B.S. and Tanneeru S.R., Characterisation of zinc oxide nanoparticles-herbal synthesised coated with *Ocimum tenuiflorum*, *Advances in Materials and Processing Technologies*, **8(2)**, 466-477 (2022)
9. Bumbudsanpharoke N., Choi J. and Ko S., Applications of nanomaterials in food packaging, *Journal of Nanoscience and Nanotechnology*, **15(9)**, 6357-6372 (2015)
10. Chaudhuri S.K. and Malodia L., Phytosynthesis and characterization of silver nanoparticles synthesized from flower extract of Roheda (*Tecomella undulata* G. Don), *Defence Life Sci J*, **2**, 65-73 (2017)
11. Chaudhuri S.K., Chandela S. and Malodia L., Plant Mediated Green Synthesis of Silver Nanoparticles Using *Tecomella undulata* Leaf Extract and Their Characterization, *Nano Biomedicine & Engineering*, **8(1)**, 1-8 (2016)
12. Cittadini M.C., García-Estévez I., Escribano-Bailón M.T., Bodoira R.M., Barrionuevo D. and Maestri D., Nutritional and nutraceutical compounds of fruits from native trees (*Ziziphus mistol* and *Geoffroea decorticans*) of the dry chaco forest, *Journal of Food Composition and Analysis*, **97**, 1-7 (2021)
13. Das R.K., Sharma P., Nahar P. and Bora U., Synthesis of gold nanoparticles using aqueous extract of *Calotropis procera* latex, *Materials Letters*, **65(4)**, 610-613 (2011)
14. Dhar S.A., Chowdhury R.A., Das S., Nahian M.K., Islam D. and Gafur M.A., Plant-mediated green synthesis and characterization of silver nanoparticles using *Phyllanthus emblica* fruit extract, *Materials Today: Proceedings*, **42**, 1867-1871 (2021)
15. Dubey S. and Sharma Y.C., *Calotropis procera* mediated one pot green synthesis of Cupric oxide nanoparticles (CuO-NPs) for adsorptive removal of Cr (VI) from aqueous solutions, *Applied Organometallic Chemistry*, **31(12)**, 1-15 (2017)
16. Elemike E.E., Nna P.J., Ikenweke C., Onwudiwe D., Omotade E.T. and Singh M., Synthesis, characterization, anti-cancer and antimicrobial studies of iron oxide nanoparticles mediated by *Terminalia catappa* (Indian almond) leaf extract, *Inorganic Chemistry Communications*, **155**, 111048 (2023)
17. Elumalai K., Velmurugan S., Ravi S., Kathiravan V. and Ashokkumar S., RETRACTED: Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of *Tamarindus indica* (L.) and its biological evolution of antibacterial and antifungal activities, Elsevier, 1052-1057 (2015)
18. Gajanan K. and Tijare S.N., Applications of nanomaterials, *Materials Today: Proceedings*, **5(1)**, 1093-1096 (2018)
19. Gautam M., Kim J.O. and Yong C.S., Fabrication of aerosol-based nanoparticles and their applications in biomedical fields, *Journal of Pharmaceutical Investigation*, **51(4)**, 361-375 (2021)
20. Gawade V.V., Gavade N.L., Shinde H.M., Babar S.B., Kadam A.N. and Garadkar K.M., Green synthesis of ZnO nanoparticles by using *Calotropis procera* leaves for the photodegradation of methyl orange, *Journal of Materials Science: Materials in Electronics*, **28**, 14033-14039 (2017)
21. Gomathi M., Rajkumar P.V., Prakasam A. and Ravichandran K., Green synthesis of silver nanoparticles using *Datura stramonium* leaf extract and assessment of their antibacterial activity, *Resource-Efficient Technologies*, **3(3)**, 280-284 (2017)
22. Han X., Xu K., Taratula O. and Farsad K., Applications of nanoparticles in biomedical imaging, *Nanoscale*, **11(3)**, 799-819 (2019)
23. Hashmi M.U., Khan F., Khalid N., Shahid A.A., Javed A., Alam T. and Janjua H.A., Hydrogels incorporated with silver nanocolloids prepared from antioxidant rich *Aerva javanica* as disruptive agents against burn wound infections, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **529**, 475-486 (2017)
24. Hiremath S., Mal A.R., Prabha C. and Vidya C., *Tamarindus indica* mediated biosynthesis of nano TiO_2 and its application in

photocatalytic degradation of Titan yellow, *Journal of Environmental Chemical Engineering*, **6**(6), 7338-7346 (2018)

25. Hussain I., Singh N.B., Singh A., Singh H. and Singh S.C., Green synthesis of nanoparticles and its potential application, *Biotechnology Letters*, **38**, 545-560 (2016)

26. Hussain S. et al, Green synthesis of nickel oxide nanoparticles using *Acacia nilotica* leaf extracts and investigation of their electrochemical and biological properties, *Journal of Taibah University for Science*, **17**(1), 1-12 (2023)

27. Hutchison J.E., Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology, *ACS Nano*, **2**(3), 395-402 (2008)

28. Ijaz I., Gilani E., Nazir A. and Bukhari A., Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles, *Green Chemistry Letters and Reviews*, **13**(3), 223-245 (2020)

29. Iqbal A., Haq A.U., Cerrón-Calle G.A., Naqvi S.A.R., Westerhoff P. and Garcia-Segura S., Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via *capparis decidua* leaf extract for synergic adsorption-photocatalytic degradation of pesticides, *Catalysts*, **11**(7), 1-17(2021)

30. Iqbal P., Preece J.A. and Mendes P.M., Nanotechnology: the “top-down” and “bottom-up” approaches, *Supramolecular chemistry: from molecules to nanomaterials*, 1-14 (2012)

31. Kaur Manpreet, Sharma Divya and Gupta Reena, Isolation of lipase producing thermotolerant *Bacillus subtilis* TTP-06 from hot spring of Himachal Pradesh, *Res. J. Biotech.*, **18**(11), 96-105 (2023)

32. Khan A., Shabir D., Ahmad P., Khandaker M.U., Faruque M.R.I. and Din I.U., Biosynthesis and antibacterial activity of MgO-NPs produced from *Camellia-sinensis* leaves extract, *Materials Research Express*, **8**(1), 1-10 (2020)

33. Kora A.J. and Rastogi L., Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, a glucuronoarabinogalactan biopolymer, *Industrial Crops and Products*, **81**, 1-10 (2016)

34. Kumari T., Phogat D. and Shukla V., Exploring the multipotentiality of plant extracts for the green synthesis of iron nanoparticles: A study of adsorption capacity and dye degradation efficiency, *Environmental Research*, **229**, 116025 (2023)

35. Mahmood F., Zehra S.S., Hasan M., Zafar A., Tariq T., Javed H.U. and Hatami M., Morpho-physiological growth performance and anti-oxidative capabilities of *Acacia jacquemontii* and *Acacia nilotica* upon exposure to Co3O4 Nbs in lead-contaminated soil, *Plant Physiology and Biochemistry*, **204**, 108081 (2023)

36. Majumdar R., Bag B.G. and Maity N., *Acacia nilotica* (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity, *International Nano Letters*, **3**, 1-6 (2013)

37. Manjunatha R.L., Usharani K.V. and Naik D., Synthesis and characterization of ZnO nanoparticles: A review, *Journal of Pharmacognosy and Phytochemistry*, **8**(3), 1095-1101 (2019)

38. Mavani K. and Shah M., Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent, *Int. J. Eng. Res. Technol*, **2**(3), 1-5 (2013)

39. Merkel T.J., Herlihy K.P., Nunes J., Orgel R.M., Rolland J.P. and Desimone J.M., Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles, *Langmuir*, **26**(16), 13086-13096 (2010)

40. Mokkapati S., Beck F.J., Polman A. and Catchpole K.R., Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells, *Applied Physics Letters*, **95**(5), 1-3 (2009)

41. Munazir M., Qureshi R. and Munir M., Preliminary phytochemical screening of roots and aerial parts of *Leptadenia pyrotechnica*, *Pakistan Journal of Botany*, **47**(2), 659-664 (2015)

42. Murugan K., Senthilkumar B., Senbagam D. and Al-Sohaibani S., Biosynthesis of silver nanoparticles using *Acacia leucophloea* extract and their antibacterial activity, *International Journal of Nanomedicine*, **9**, 2431-2438 (2014)

43. Nabi G., Majid A., Riaz A., Alharbi T., Kamran M.A. and Al-Habardi M., Green synthesis of spherical TiO₂ nanoparticles using *Citrus limetta* extract: Excellent photocatalytic water decontamination agent for RhB dye, *Inorganic Chemistry Communications*, **129**, 1-8 (2021)

44. Nagaraja K., Prasad B., Almarhoon Z.M. and Oh T.H., Green multifunctional palladium nanoparticles from polysaccharide *Cordia myxa* (CMY) gum: Synthesis, characterization and antibacterial activity, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **679**, 132612 (2023)

45. Nalawade S.A., Shinde B., Chaudhari S., Badhe M.S., Kadam V.K., Chaskar M.G. and Pingale S.S., A review on biosynthesis and applications of various nanoparticles using extracts of medicinal plant *Tribulus terrestris*, *Materials Today: Proceedings*, **73**, 427-430 (2023)

46. Nasrollahzadeh M. and Sajadi S.M., Green synthesis of Pd nanoparticles mediated by *Euphorbia thymifolia* L. leaf extract: catalytic activity for cyanation of aryl iodides under ligand-free conditions, *Journal of Colloid and Interface Science*, **469**, 191-195 (2016)

47. Poole C.P. and Owens F.J., Introduction to nanotechnology, A Wiley-Interscience publication, 145-150 (2003)

48. Qiao H., Li Z., Liu F., Ma Q., Ren X., Huang Z. and Zhang H., Au Nanoparticle modification induces charge-transfer channels to enhance the electrocatalytic hydrogen evolution reaction of InSe nanosheets, *ACS Applied Materials & Interfaces*, **14**(2), 2908-2917 (2022)

49. Rasha E., Monerah A., Manal A., Rehab A., Mohammed D. and Doaa E., Biosynthesis of zinc oxide nanoparticles from *Acacia nilotica* (L.) extract to overcome carbapenem-resistant *Klebsiella pneumonia*, *Molecules*, **26**(7), 1-16 (2021)

50. Saif S., Tahir A., Asim T., Chen Y., Khan M. and Adil S.F., Green synthesis of ZnO hierarchical microstructures by *Cordia myxa* and their antibacterial activity, *Saudi Journal of Biological Sciences*, **26**(7), 1364-1371 (2019)

51. Saini R. and Kumar P., Green synthesis of TiO₂ nanoparticles using *Tinospora cordifolia* plant extract & its potential application for photocatalysis and antibacterial activity, *Inorganic Chemistry Communications*, **156**, 111221 (2023)

52. Sarfraz N. and Khan I., Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications, *Chemistry—An Asian Journal*, **16**(7), 720-742 (2021)

53. Sharma D., Kanchi S. and Bisetty K., Biogenic synthesis of nanoparticles: a review, *Arabian Journal of Chemistry*, **12**(8), 3576-3600 (2019)

54. Sharma S.K., Kumar R., Vaishnav A., Sharma P.K., Singh U.B. and Sharma A.K., Microbial cultures: maintenance, preservation and registration, Modern tools and techniques to understand microbes, 335-367 (2017)

55. Sharma S., Kumar K., Thakur N. and Chauhan M.S., *Ocimum tenuiflorum* leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens, *Chemical Papers*, **74**(10), 3431-3444 (2020)

56. Sutradhar P. and Saha M., Size-controlled synthesis of silver nanoparticles using *Zizyphus mauritiana* fruit extract, *Main Group Chemistry*, **15**(1), 47-55 (2016)

57. Verma P.R., Khan F. and Banerjee S., *Salvadora persica* root extract-mediated fabrication of ZnO nanoparticles and characterization, *Inorganic and Nano-Metal Chemistry*, **51**(3), 427-433 (2020)

58. Waris A., Din M., Ali A., Ali M., Afzidi S., Baset A. and Khan A.U., A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications, *Inorganic Chemistry Communications*, **123**, 1-49 (2021)

59. Zafar N., Uzair B., Menaa F., Khan B.A., Niazi M.B.K., Alaryani F.S. and Sajjad S., *Moringa concanensis*-mediated synthesis and characterizations of ciprofloxacin encapsulated into Ag/TiO₂/Fe₂O₃/CS nanocomposite: A therapeutic solution against multidrug resistant *E. coli* strains of livestock infectious diseases, *Pharmaceutics*, **14**(8), 1-25 (2022)

60. Zaman M.B., Poolla R., Singh P. and Gudipati T., Biogenic synthesis of CuO nanoparticles using *Tamarindus indica* L. and a study of their photocatalytic and antibacterial activity, *Environmental Nanotechnology, Monitoring & Management*, **14**, 1-10 (2020)

61. Zubair M., Azeem M., Mumtaz R., Younas M., Adrees M., Zubair E. and Ali S., Green synthesis and characterization of silver nanoparticles from *Acacia nilotica* and their anticancer, antidiabetic and antioxidant efficacy, *Environmental Pollution*, **304**, 1-12 (2022).

(Received 24th June 2024, accepted 29th July 2024)